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Abstract-Inhomogeneous forcing functions, in the governing equations for linearized coupled deformation
and pore-fluid diffusion, are characterized directly and via reciprocity theorem; inelastic straining or
porosity changes, body-forces on fluid or solid and arbitrary fluid injection all elicit a response composed by
appropriate distribution of point-force and fluid-source densities. The complete set of fundamental influence
functions is established (via symmetry arguments) for an isotropic medium, so transparently that basic
solutions for dipoles and point plasticity (slip or dilation) follow simply: the simulation of arbitrary
anomalous zones of inelasticity is made rigorous in the process of proving dipole-equivalency for plasticity.
Analytical and numerical implementation, for simulation of fracture phenomena in fluid-saturated porous
media, is emphasized.

INTRODUCTION

There is a broad class of phenomena in soil and rock mechanics (e.g. as summarized by the
author in Chap. 1 of [lD, of which the dominant characteristics are well represented by a model
of localized plastic flow (and/or fluid injection) in an otherwise elastic medium composed of a
deformation-controlling solid matrix with saturated interstices (viz. pore-space). Considerable
study has been devoted to constitutive relations for the inelastic deformation (e.g. see the
conference proceedings in [2D, particularly to the conditions for frictional slip and the inclusion
of pore-fluid effects via classical effective stress laws for failure (e.g. Chap. 3 of [3D. However,
the "consolidation" response of the saturated elastic medium (outside the zone of confined
inelasticity), as a result of local slip, cracking or dilation, has not been analyzed: indeed, very
few basic solutions of any kind are available for the coupled deformation-diffusion response
that such a medium exhibits (e.g. see summary in Chap. 3 of [lD. The purpose of this paper is to
provide a methodology and (for a linear isotropic model) a complete set of fundamental
solutions (in the classical sense, e.g. [4D which can, either directly or through numerical
implementation, be applied to model quite general problems of consolidation and inelastic
deformation (e.g. Chap. 4 of [1]) especially if "yielding" is localized in a fluid-saturated porous
material.

To allow superposition of fundamental solutions the elasticity assumptions used will be
linearized and the deformations are to be small (or incremental with suitable homogeneity
restrictions): the model is a rationalized version of the classical Biot relations [5, 6], requiring
only matrix strains (derivable from a solid displacement) and an internal variable called
pore-pressure for complete specification of the isothermal quasi-static state. The parameters of
the model are the drained (zero pore-pressure) and undrained (zero change in fluid content per
unit volume) elastic moduli, together with classical coefficients (of soil mechanics) measuring
the induced pore-pressure for undrained stressing. Only the content of untrapped fluid is
variable and the porosity is the apparent volume fraction occupied by this freely filtrating fluid.
The isotropic version (of most importance in this paper) has been rationalized by Rice and
Cleary [7] and the anisotropic moduli have recently been similarly treated by the author. The
resulting field equations are identical to those of linear coupled thermoelasticity (as noted also
in [1, 7-9]) so one might expect an abundance of basic well-known solutions. UnfortunatelY,
most solutions in thermoelasticity have been worked out after uncoupling the deformation from
the diffusion equation (e.g. see review by Boley [10]), a procedure that is quite justifiable for
typical values of thermoelastic constants (e.g. [11]) but which would completely lose the
essence of porous media consolidation (again, see Chaps. 2 and 3 of [1] for rationalization of
the thermoelastic analogy).
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Indeed, very few worthwhile attempts have been made to solve the coupled, even isotropic,
equations (an exception being Nowacki [12, 13] in the thermoelastic context), and many of these
were specific to the poroelasticity applications. Biot provided some early solutions [14, 15] and
then gave a displacement potential method [16] which has some advantage for particular
techniques (e.g. that of Vargas[l7J, who employs Fourier transforms to solve the Biot equations
for dynamic response to suddenly introduced point forces, an application of the pore-pressure
theory which is often inappropriate [1]). Others have used transform techniques, both for
dynamic[13] and quasi-static [18] problems (and, indeed, we could use such methods to find the
solutions in this paper, but we consider that the procedures merely obfuscate simplifying
features); their results are rarely rendered sufficiently transparent (or even tractable) for simple
interpretation. A review may be found in Chap. 3 of [1] but here we shall take the most direct
approach, which also happens to reveal characteristics of solutions for anisotropic or non-linear
response (by keeping direct contact with the real region and forcing functions).

We begin by identifying the forcing functions in the governing equations, due to body forces
on solid or fluid, injection of fluid or the occurrence of "plastic" deformation. A reciprocity
theorem suggests, and condensation of field equations confirms, that the response to any of
these multiple inhomogeneous terms can be constructed from a suitable distribution of point
forces and fluid sources: thus, the minimum number of fundamental solutions for the linear
theory is four for general anisotropy and two for an isotropic medium. The latter two solutions
are then provided in such a transparent fashion that response to dipoles (shown to represent
point plasticity by an Eshelby-type procedure) follows simply and we have all of the basic
solutions we need for immediate application to localized inelastic deformation (e.g. anomalous
dilatancy and faulting in the geophysical context).

CONSTITUTIVE EQUATIONS FOR A SATURATED POROUS MEDIUM

The material is composed of a solid matrix which contains interstitial pore-space filled with a
freely diffusing pore-fluid. The mass of free fluid per unit volume is denoted by m which has an
associated apparent volume fraction v defined by m '" pv, where p is the fluid density. Any
trapped fluid (e.g. in adsorbed layers or non-communicating pore-space) is regarded as con­
tributing to the net constitutive behaviour of the solid component, i.e. the moduli of the solid
are to be regarded as effective moduli and the volume fraction of pore-space (v) is really an
apparent fraction occupied by the free fluid. The deformation, when small or incremental, may
be described by a suitable average vector displacement of the solid constituent, having
components Ui in cartesian co-ordinates and giving rise to average cartesian strains Eij, defined
by

1
Eij = i(Ui.j +uj.d. (1)

Partial differentiation is denoted by a comma followed by the co-ordinate, Ui.j'" audaxj and we
are using the usual Einstein notation. Changes in the volume fraction, ~v, and incremental
strains Eij, will occur in response to changes (assumed quasi-static) in the dynamic variables
which are chosen here as the total stresses lTij and the internal pressure on the pore-fluid p,
assumed to have a local equilibrated value if deformation is sufficiently slow.

There is an elasticity associated with deformation of this porous medium; it is a result of the
presumed existence of an energy function of the classical reversible thermostatic kind, i.e. we
postulate that so-called "elastic" closed cycles of stressing may be performed in which the
value of a suitable state function U(aij, p) also undergoes a closed cycle. A convenient choice
for U, as a starting point, is the function whose perfect differential is given, when deformation
is elastic, by

dU = aij dEij +P dv + T dS (2a)

where T is the local temperature and S is entropy per unit volume; this is a function U very
similar to the internal energy per unit volume (Chap. 2 of [1]). Our concern will be with
isothermal quasi-static deformation so it is appropriate to perform a Legandre transform to a
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free energy function cI>(Uij, p),

cI> = U - UijEij - P I1v - ST, dcI> = - Elj dUij -l1v dp.
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(2b)

Clearly, then, elastic deformation measures are expressible as partial derivatives of cI>(Uij, p);
this observation provides a means of identifying the "plastic" part (En, I1V P

) of the deformation,
which we define (in a manner that seems arbitrary but is made rigorous in Chap. 2 of [1]) as the
difference between the total deformation and its elastic part,

acI> P acI>En == Eij +-, I1V == I1v +-.
aUij ap

(2c)

Since cI>(Uij,P) is a state function, so are acI>/aUij and acI>/ap; like Biot[6] we linearize these
elastic constitutive laws to obtain, in deference to symmetry implied by second derivatives of
eqn (2c),

Eij - En = CijklUkl +BijP, Uij = .:t'ijkl[(Ekl - Ef,) - BkIP]

I1v -l1v P =Bm1Iumn +Dp =Bmn.:t'mnkl(Ekl - EfJ) +(D - Bmn.:t'mnkIBkl)p.

(3)

The compliance and stiffness tensors, C,jkl and .:t'ijkl, have the usual elastic symmetry, containing
a maximum of 21 independent components when no material symmetry is present; Bij is
necessarily symmetric like Eij. We say nothing here about the constitutive equations for En and
I1vP

, which are discussed at length elsewhere (e.g. Chap. 2 of [1]).
We need some constitutive assumptions about the pore-fluid: it is considered to be barotropic

and its pressure-density curve is linearised. Thus, if the mass of free fluid per unit volume is
m = pv, the change in m is approximated by

11m =pol1v + vol1p =po(l1v +vop/Kf) (4)

where po, Vo are the reference values of p, v (before applying Uij and p), and Kf is the bulk
modulus of the fluid. Our last assumption concerns the rate at which the fluid transports under a
potential gradient. This rate equation has also been investigated more carefully elsewhere (e.g.
Chap. 2 of [1]) so we merely record the special linear D'Arcy version,

(5)

Here qi is the component of the fluid mass flow rate in the Xi direction, It are the components
of the perturbation in the field of body-force per unit mass acting on the fluid and Kij are the
components of the permeability tensor, usually given as kij/"" where ,.,. is the dynamic viscosity
of the fluid and kij have dimensions of area. The second order cartesian tensor Kij can be shown
to be symmetric by familiar Onsager arguments (e.g. see [19]).

It is worth emphasizing here that the assumption of a unique ("locally equilibrated")
pore-pressure p is a severe restriction which limits application of the theory, for most
representative microstructures, to quasi-static deformation (e.g. see Chap. 2 of [1]). There have
been many theories for dynamic response of porous media (e.g. see [17]) which implicitly retain
the assumption of unique p; their conclusions (e.g. the dynamic counterpart of the point slip
solution developed later), presumed mathematically correct, should be applied only to the very
limited class of media for which the local equilibration time is sufficiently short[I].

CONSERVATION EQUATIONS

There are just two non-trivial conservation laws in the present isothermal quasi-static
context: the first is a momentum balance or equilibrium equation

Ukl,l +Ik = 0 (6)

in which /k is the change in body-force per unit volume (including that on solid and fluid). The
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second equation is that of fluid-mass conservation,

am F
qkk +-= r, at (7)

in which r F is the rate of fluid-mass supply per unit volume and repeated subscripts denote
summation. It will be convenient (as in [16]), to have a time-integrated version of eqn (7) so we
introduce a total fluid displacement vector Qi and a total volume of supplied fluid RF to get

F aQi F aR F

Qi,i +ilmlpo =R ; qi =po-, r = po-.
at at (8)

The array of governing eqns (1-8) may be combined to get a set of field equations; for
instance, eqns (6-7) lead directly to four coupled equations in the unknowns Uf, p. These
equations contain a variety of non-homogeneous terms; body-forces f/, fk, plastic deformation
eij, ilvP and source-terms r F all appear (as shown in Appendix), and we might fear that each
inhomogeneous term calls for a separate fundamental Green function from which any field
distribution of the inhomogeneity could be obtained by superposition; this would imply that 14
fundamental solutions are needed for the most general anisotropic body, reducing to 6 in the
isotropic limit.

Actually, closer scrutiny of the field equations (Appendix) reveals that there is a strong
correspondence in the status of the various inhomogeneous terms: for instance, the gradient of
the plastic strain distribution is found to appear in the same context as the body forces fk. The
result of this correspondence will be that only 4 Green's functions are needed for the general
anisotropic case and this number reduces to a twain in the isotropic limit. A convenient way to
identify the correspondence, without resorting to field equations in particular variables, is by
examining their status in a reciprocal relation between any two arbitrary solutions of the
governing eqns (1)-(8). The appropriate reciprocity theorem is given next. The theorem actually
provides an important means of establishing a range of useful solutions from knowledge of a
few elementary solutions for the geometry in question; the simplest example would be the
derivation of the solution for a slipped region in the body from that for a point-force. t
However, we find an alternative way for establishing the inelastic solutions being sought in this
work so only the theorem's ability to characterise eij, ilvP etc. will be emphasised in the present
paper.

An even more important role of the reciprocal theorem has been defined by the author
(Chap. 4 of [1]), namely as the basis of a boundary-integral equation scheme for solving eqns
(1H8) in homogeneous regions of arbitrary geometries with boundary conditions on Ui (or Uijnj,

where ni is normal to surface) and on p (or on qknk). Since basic solutions of these coupled
deformation and diffusion field equations are quite difficult to find analytically, except those
derived later and some other special geometries, such numerical schemes are considered
essential (and more economic, when applicable, than other, e.g. finite element, methods). Thus,
for its twin value, the theorem is recorded here in isolation.

RECIPROCITY THEOREM FOR AN ELASTIC POROUS MEDIUM

We consider two separate "deformation" fields, {Uk(\), Qk(l)} and {Uk(2), Qk(2) which are related
to the "stress" fields {(41),P(\)} and {ufl>' p(2) in the sense that they satisfy all of eqns (1H8) in
the presence of the "forcing" fields {en(\), ilvP(I), ft(\), N\), RF(I)} and {eij(2), ilVP(2), ft(2), N2J,

RF
(2J}. We prove (in Appendix) that this pair of otherwise completely arbitrary fields bear a

reciprocal relation to each other in the following sense: for any arbitrary fixed volume V in
space, surrounded by a surface S, the convolution products of the deformation with the stress

tSuch an application of the reciprocal theorem (in the elasticity context, e.g. p = 0) has been shown by Rice and
Chinnery[20j and is an alternative method, to the Eshelby-type procedure described later. for arriving at the force-dipole
equivalency of point slip or extension.
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variables satisfy the equation
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Is {Tk(I)Uk(2) - N2)Uk(l») - (jJ(I)Qn(2) - p(2)Qn(t))} dS +Iv {(Fk(l)Uk(2) - Fk(2)Uk(l) +POi{(I)Qk(2)

- poit(2)Qk(l»)} dV +Iv{fi(l)f'F(2) - p(2)f'F(I)} d V = O. (9a)

in which we have introduced the following notation

Tk == (Ukl + .Pijk/e~)n, , Qn == Qknk

Fk == fk - (.Pijkle~).1

r F == R F
- Jlv P +.PijklBkle~

(9b)

and where a superposed tilde is used to denote the Laplace transform of the variable, for
instance

(9c)

We are using the Laplace transform to give a convenient representation of convolution
products as products of Laplace transforms: if h(t) is any function defined as the time
convolution of two other functions, f(t) and g(t), namely

h(t) = Lf(r)g(t - r) dr (9d)

then the Laplace transform of h is Ii(s) = i(s )g(s).
Each of the products in eqn (9a) is the transform of a time function resembling energy

supplied to the material within volume V, but the resemblance is actually just formal. A
particular example, when the field {Uk(l), Q;Pl, uW, p(l)} is a real field solving a given boundary
value problem and {Uk(2), Qk(2), U~7), P(2)} is some arbitrary variation on that field satisfying eqns
(1)-(8) and maintaining the given boundary conditions, leads to a useful variational principle for
numerical analysis (e.g. Chap. 4 of [1]). TkUk resembles work done by tractions on the boundary
Sand Tk contains an additional traction stress term .:ejjkle~ which must be included in computing
the energy supply TkUk. More interesting is the observation that the gradient of plastic strain
(.Pijkle~).1 appears in the same role as the total body forces and that fundamental influence
functions for localised point forces may therefore be used to simulate this particular effect of a
plastic strain distribution.

The forcing function e~ also appears in the role of a fluid source density .PijklBk1e6, along with
R F and Jlv P

; the latter has quite a simple physical interpretation as the fluid volume needed to
fill the additional created pore-space but .PijkIBkle~ is somewhat more subtle: it is the volume of
fluid (per unit total volume) which must be removed, in order to maintain zero pore-pressures,
after a plastically deformed element has been restored to its initial state by imposing reverse
total stress increments (see the last of eqns (3)). We shall discuss this (Eshelby-type) concept of
restoring the original state of an element after it is plastically deformed, when we derive the
influence functions for point slip and point dilation later on.

What has been recognised by writing eqn (9) is that the fundamental solutions for all of the
forcing terms e~, Jlv P

, ft, fk, r F may be derivable from those for fk, rF only i.e. from
point-force and fluid source solutions only. What has not been identified by eqn (9) is that the
forcing functions fk, ft, e6 also generate a distribution of fluid-source dipoles; loosely, we might
attribute this failure to the fact that such dipoles do not have any associated net energy
absorption. The dipoles do, however, appear in the governing field equation of diffusion. Since
the next step in this work is to establish fundamental point force and source solutions for an
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isotropic medium, it will be convenient to set out all the governing field equations for such a
medium (in the next section) and these will reinforce the correspondence among forcing
functions just established; they will also reveal the dipole distribution,

FIELD EQUATIONS FOR AN ISOTROPIC MEDIUM

When the field equations are written for a general anisotropic porous solid (Appendix 1),
much of the correspondence among forcing terms is exposed, just as it is by eqn (9). However,
these most general equations are much less tractable and somewhat less revealing (especially in
the resulting form of the diffusion equation) than their special isotropic limit. Although physical
considerations suggest the necessity of an anisotropic model (e.g. geophysical applications), our
philosophy here is that the isotropic model is by no means exhausted (e.g. as to identification of
primary features of subterranean faulting and fracturing) and it provides useful understanding
with which anisotropic solutions can be compared, as they become available. We have argued
elsewhere (Chap. 1 of [1)) that the isotropic Biot model seems capable of describing many
time-dependent aspects of rupture phenomena. The remainder of our analysis is therefore
devoted to extracting basic solutions for an isotropic saturated porous medium.

The parameters and moduli of an isotropic medium have been discussed by Rice and
Cleary [7] and, in the notation of eqn (3), are as follows:

Y;'kl == G[5'k5" +5,,5'k +~5"5kl]
IJ I J I J (1- 2v) IJ

3(vu - v)
Bij == 2GB(1 +v)(1 + vu) 5/j, Kij == K5ij

1 ( 1 1 ) 2G(1 + v)
D==Ji K-K~' K:= 3(1-2v)'

(10a)

(10b)

(lOc)

(10d)

The "drained" Poisson ratio of the solid matrix is v, G is the shear modulus, Vu is the
"undrained" Poisson ratio and B is the induced pore-pressure parameter of Skempton[21]. By
"undrained" we mean the response immediately after application of stress and its significance is
made obvious by deriving a more transparent form of eqn (4), namely

, p 3po(vu - v) [ 3]
L1m := L1m - poL1v == 2GB (1 + v)(1 + vu) tJ'kk +liP . (11)

By noting that L1m' == 0 immediately upon application of a stress increment tJ'/j, we observe that
the instantaneous induced pore-pressure is pinst, == - BtJ'kk/3. The last parameter in eqns (10) is
the effective bulk modulus of the non-mobile ("solid") constituent, K~.

Our present choice will be to combine eqns (1), (3), (6) to obtain a set of modified Navier
equilibrium equations for displacement

(12)

in which the gradients of E~ appear clearly in the role of body-forces. (Of course, P,i appears
also in that role but cannot be regarded as a known distribution since its behaviour is coupled to
the solution for Uk.k as we shall see immediately). A very useful consequence of eqn (12) is
obtained by computing its divergence and converting from Uk,k to tJ'kk:

(13)
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We shall find that this is the only compatibility equation needed for the class of problems
considered in this analysis. We could equally well have chosen to write compatibility equations
on stress (like Rice and Cleary [7]) instead of eqns (12).

We can manipulate eqns (5), (7), (11) and (13) to obtain a diffusion equation of the form

c(.lm' + r'),11 - :t (.lm' +r') = - 'l

where we have employed the abbreviation -./ for a net fluid supply rate

F F a p, 2 F pOKB (1 + v.)
'V =r --(po.lv -r )-po Kfkk+ Fkk
1 at . 3(1- v.) ,

and the other fluid source r' derives from "elastic" restoration of plastic dilation,

r' = 3po(v. - v)Efk .
B(1- 2v)(1 + v.)

(14a)

(14b)

(14c)

Actually, r' is exactly the term poffijklBklEG mentioned in and after eqn (9) and its appearance in
eqn (14a) is perfectly consistent with its interpretation as the change of fluid mass when a
dilated element is restored to its pre-dilation state while allowing all pore-pressures to damp out
to zero. The parameter of diffusivity c was deduced by Rice and Cleary[7] to be

(l4d)

It is worth inspecting eqn (14a) to see that it does contain all of the fluid source
characteristics of EG and .lvP exactly as predicted by eqn (9) i.e. rF

- (Jo(!J.v P - !tjjk/Bk/€lJ) is the
net source generated and sudden occurrences of .lvP and EG generate instantaneous sources.
But eqn (14) also exposes the fact that both f/ and Fk (eqn (12)) give rise to a source density
which can very quickly be shown to have the character of a distribution of dipole pairs of
sources and sinks; this is recognised, for instance, by considering a single localised (say
bell-shaped) distribution of f/ or Fk which, in the limit of localisation, generates a single
dipole: then any given field of f/ or Fk may be composed of a suitable density of the single
point forces, leading (by superposition) to a density of dipole pairs. We must be careful to
distinguish between the stress fields of f/ and Fk, however, since the former generates a pure
dipole while the latter must also be equilibrated by the stress field: the fluid flow field of f/
reaches a steady state at t = 00 while that of Fk (we shall see) damps out to extinction. These
points will be more readily understood in the later section on solutions for sources and dipoles.

Equations (12) and (14) reinforce the assertion that the effects of all the forcing functions on
both solid displacement and fluid flow may be reduced to those of an appropriate distribution of
localised forces and fluid sources: thus any combination of EG, .lvP,f/, fk, rFmay be simulated
once we have the solution for an arbitrarily oriented point force and a fluid source in the
material and geometry of interest. These may not be easy to establish in general but they can be
found for special cases: one such useful pair of solutions (for an infinite isotropic medium), and
their application to deriving more directly usable Green's functions, are the object of the
remainder of this analysis.

The solutions which we develop actually fit into either of two classes of problems associated
with eqns (12)-(14). The first class (containing all unidimensional problems, including the fluid
source, for instance) is that for which Uk is the gradient of a scalar cP, Uk = cP,k; the implications
for eqns (12) are

3(v.-v) ( v )
cP,kk = Ekk = 2GB(1- v)(1 + v.l + 1- v Efk+ g (15a)

where we have introduced a (perhaps artificial) scalar potential g which may (or may not) have
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an actual physical meaning as the body-force potential

(15b)

The consequence of eqn (15a) is that eqn (14a) may be reduced to a diffusion equation in P
alone: it is notationally convenient to write this equation in terms of a variable p e, analogous to
Am e +re

,

e I ap e yF
P,I/---=--,

c at poK

2GB(1 + vu)
pe == p +3(1- vu)(l- 2v)[Efd (1- v)g]. (15c)

If all forcing functions are absent then only g survives and it is spatially constant (eqn 15b) so
that eqn (15c) becomes

ap 2GB(1 +vu)(I- v) dg(t)
CP,I/-at= 3(1-vu)(I-2v) dt

(l5d)

and even the latter inhomogeneity vanishes if the region is infinite; however, g can have great
importance in bounded regions (e.g. the annular specimen in [7]).

The second class of problems is that for which the "harmonic" function in eqn (13) is
time-independent,

a [ 6(vu - v) ]
- O"kk+ P =0
at B(1- vu)(l + vu)

(16)

and this class will be shown here to contain all problems of embedded body-forces and
"plasticity" in an infinite region. Rice and Cleary [7] noticed the plane-strain version of the
time-independent function in eqn (16) when they solved for the field of long straight edge
dislocations or lines of concentrated body force; since we find it to apply for the point force
solution considered next, and then prove that all embedded slip or cracking is derivable as a
distributed density of such singular solutions, we conclude that all surface discontinuity
problems in an infinite medium have the characteristic of eqn (16), which greatly simplifies their
solution.

POINT FORCE IN AN INFINITE MEDIUM

The first fundamental solution which we seek is that for a forcing function of the kind

(17)

where 5(x) and H(t) are the usual Dirac delta and Heaviside step functions. It transpires that
our solution will automatically display the fluid source dipole effect suggested by eqn (14) if we
enforce the inhomogeneity which fk causes in eqns (3), (6) and (12). We set all other forcing
terms (ft, r F

, AV P
) to zero, merely noting the obvious duality of fk and (It'ijkIE6),1 in eqn (12)

which is explored later in detail.
The labour of solution is minimised by noting the high degree of symmetry connected with

the field of the point force in eqn (17); in Fig. I, we show the force acting in the x3-direction,
without loss of generality for an isotropic material, and it is apparent immediately that the
problem is axisymmetric with respect to the axis X3. In terms of the spherical co-ordinates
superposed on the diagram, the field of influence is independent of the meridional angle 4J and
the meridional displacement u</> vanishes so both of the shear-stresses O"r</>, 0"8</> vanish and O"</></>

may be deduced once the solution in the (r, 4J )-plane is known.
The result of these observations is that only eqns (6), (13) and (14) will be needed to obtain

the stress-field of the point-force (and thence the displacement field). The procedure developed
below is considered to be much more revealing than that which results from application of
conventional transform techniques (e.g. those of McNamee and Gibson [18] and Nowacki[13]).
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3

Fig. I. Point force at the origin of an infinite medium; spherical coordinates are attached and axisymmetry
of the response in an isotropic medium is implied.

A corollary of our solution is that of Kelvin for a point force in an infinite elastic medium.
We begin by noting that pore-pressure p is a scalar variable which enters as the parameter

controlling the variation of an elastic stress field; its evolution is governed by the diffusion eqn
(14) but there is no characteristic length present in the problem except that provided by the
diffusion length y'ct. All equations are linear so p must be linear in the arbitrarily oriented Pk

and it must have dimensions of stress: we can find only one form which respects all of these
considerations,

(18)

where f I is a scalar function, which may contain the material constants.
It is advantageous, especially as a first step toward investigating basic solutions in aniso­

tropic (or nonlinear) media, to put our line of reasoning in the context of general restrictions
which arise from material symmetry. These considerations have led to so-called canonical
representation theorems (e.g. see Wineman and Pipkin[22]) for the dependence of a response
tensor on a set of tensors containing forcing, position and perhaps other tensors: thus, they are
useful both in formulation of constitutive relations and also in limiting the possible forms of
functions describing the field of influence of discrete forcing tensors once the constitutive
behaviour has been decided. Ours is almost the simplest possible example for use of these
theorems: the response tensor is the stress field, the forcing tensor is adequately described by
the vector Pk and the other independent variable is the vector of position Xk.

It is even more convenient to start with the displacement response Uk to Pk at Xk because
this permits us to give a simple demonstration of the kind of logic that leads, in the more
general case, to the theorems mentioned above. One first examines the symmetry of the
problem: Fig. 2 shows the transformation invariance implied by isotropy, namely that a rotation
of Pk and Xk by some (proper or improper) orthogonal transformation leads to a rotation of
Uk(Pi, Xj) by exactly the same transformation. One then introduces an auxiliary vector ak to
form the system ak, Pk, Xk; the next, most difficult, step is to establish the independent elements,
computed as polynomials of the components of ak, Pk, Xk, which are invariant under the
transformation of this system. The third step is to single out those elements fa (a = 1, ... ,A)
which are functions of Pk, Xk only (a so-called "integrity" basis for invariants of this pair of
vectors under the transformation): these are PtPk, PkXk and XkXk for present purposes. Next,
one selects those invariants Iii of the system ak, Pk, .Xk which are linear in ak because, for
instance, we observe that akUk is an invariant of the transformation: there are just two distinct
kinds of Iii here, namely

(19a)
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o R X 52
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Fig. 2. Symmetry of the response to a point force in an infinite isotropic medium; the triplicate of point
force, position and resulting displacement vectors displays a "rigid body" rotation under an orthogonal

transformation.

where /(2), t<3) are (usually tensor) polynomials of arbitrary order and P"j(3), X"j(2) are the
so-called "basic form-invariant tensors" of the present problem. The canonical representation
theorem of Wineman and Pipkin [22] then states that

where PI, P2 are scalar polynomials and (for the system of Fig. 1) the independent variables in
/(2), /(3) just happen to be scalar and identical to those in Pi, P2.

Now we simply observed that all our eqns (12)-(14) are linear and that Uk is linear and
homogeneous in Pk; Uk has dimensions of length so the only possible form it can have is

(19c)

because G is the only material parameter available to convert from force to length. The
functions h. h may be arbitrary polynomials in XkXk (but the latter has necessarily been made
dimensionless by the diffusion length vet) and may contain the other dimensionless material
parameters.

By combining eqns (3), (10), (18) and (19) we can establish the inevitable structure of the
stress-field

(20a)

and these new functions FJ, F2, F3 incorporate the displacement and pore-pressure evolution
functions:

(20b)

We have introduced the ordinary differentiation notation rw;;;; d/({)fd{ in eqn (2Ob) and shall
employ it hereafter. To complete the solution for the stress field (eqn 20a) and the pore­
pressure field (eqn 18) it remains to determine the four evolution functions FI, F2, F3, /J.

DETERMINATION OF EVOLUTION FUNCTIONS

We shall not need to use eqns (12) in the form given because eqns (6), (13) and (14) will
allow us to determine the stress-field to within an arbitrary multiplicative constant which can
then be deduced by using the relations in eqn (20b). The procedure is to apply eqns (6), of
which only two are independent because ofaxisymmetry, then to solve eqn (14) which
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produces the unknown constant, and lastly to employ eqn (13). Substitution of eqn (20a) into
eqns (6) yields

(21)

from which we obtain two independent conditions

(22aj

Actually, the second of eqns (22a) is the same as we would derive by imposing the condition
(Fig. 1) that the stress-field equilibrates a point-force: we integrate eqns (6) over any sphere
with a finite radius p, enclosing the point of force application, and then employ the divergence
theorem to get

- Pi =f CTij.j dv =f CTij(~) dS
r~p r=p r

(22b)

However, by noting that the surface integral of XiXk is zero unless i = k, we obtain additionally
the integrated form of (22ah, namely

3
F I +4F2 +F3 = - 417"

In using eqn (14) we employ the abbreviation

and thus derive the ordinary differential equation

When we impose the condition that Am' =0 when t = 0, the solution of eqn (24) is

F F", J'" 2 -.,2/4 d=-- 11 e 11
2V'; E

(22c)

(23)

(24)

(25)

where F", is the unknown value of F at t =00 which will be determined only at the very end of
this analysis. A last relation between the evolution functions. is very simply determined by
applying eqn (13) at all non-singular points; again we abbreviate to

6(vu - v) (XkPk) G = F _ i [(1 + v)(1- vU)]1t
CTkk +B(l- v)(1 +vul = 7 G(~), B (1- v)(1 +Vu)

and the resulting ordinary differential equation is

(26)

(26a)

which has a simple homogeneous solution with .;onstants readily determined by the conditions
of vanishing stresses at infinite distance from the point-force and It = 0 at t = 00, namelyt

(26b)

tNote that here lies the proof of eqn (16) for the fundamental point-force solution.
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The collection of equations for FI, F2, F3 now simplifies to

which equations have the solution

1[ 3 ] W 1~ 2 2 - 2/4F2=-- -+F", -- (1-1] /~)1] e T/ d1]
4 471" 2V; 0

(28)

3 [ 1 ] W l~ 2 2 2 - 2/4F 1=-- --Foo +- (3-51] /~)1] e T/ d1].
4 471" 2V; 0

Here we have used the temporary notation w == 2Foo(/lu - /1)/[4(1 + /1)(1- /lu)].
The first pair of eqns (20b) now provide the solution

Finally, the last of eqns (20b) confirms our algebra and enables us to solve for Foo,

Foo= -(1+/1).
471"(1- /I)

(29)

(30)

It will be convenient to have a compact listing of the evolution functions:

-FI 3 3-S1]2/e

-F2 (1- 2/1) 1]2/e-l

F3 (1-2/1) - T/2/e-l

871"(1- /I) (/lu - /I) f 2B(1 + /lu)(l- /I) 2 -T/2/4

/J = 0 + dT/ 1/ e
2y';(1- /lu) 0 3(/lu - /I)

2/2 1-1/2/e
(3-4/1)

T/2/3e-l2/3 _ 4~ (/IU - /I) e-e2/4 (31)
3 1- /lu

Equations (20a) and the first three give the stress field, eqn (18) and /J give the pore-pressure
and then eqn (19c) with the last two, gives the displacement field. Notice that /I, h FI, F2, F3
simply evolve from constants (containing /lu) at t = 0 (~= 00 for r'f. 0) to corresponding
constants (except that /lu is replaced by /I) at t = 00 (~= 0), while fl evolves from B(l +
/lu)/1271"(l- /lu) at t =0 to zero at t =00. Thus, as expected, the field evolves from undrained
(G, /lu, Am" = 0) to drained (G, /I, p = 0) elastic response.

POINT SOURCES AND FLUID DIPOLES

The second fundamental singular solution needed to simulate the response to forcing
functions AvP, E~, ft, fk, rF is that for the local injection of a specified amount of fluid,
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idealized as fluid supply at a point in order to obtain the Green function. In the notation of eqn
(14a), we are considering a fluid supply rate of f(t) and thus

(32)

The problem is necessarily spherically symmetric and thus fits into the class of solutions for
which eqns (15) are valid; it is interesting to scrutinize the special spherically symmetric version
of eqns (6), (13), (15c) so we list the equations here (without the elementary derivation given in
[7] and in the notation of Fig. 1, with (J'<t><t> = (J'99). Partly, we wish to emphasize a feature causing
error in previous treatments of geometries annular in cross-section (e.g. [9]), namely the
presence of g(r, t) as follows:

iJ(J'rr +2«(J'rr - (J'99) = _ fr
iJr r

6(vu-v) 2G(1+V)[ (1-2v)]
(J'rr +2(J'9d B(1 + vu)(1- v)p = (1- 2v) g(r, t) - 1- v Eft

(33)

(34)

(35)

These are the equations of Rice and Cleary [7] with the addition of forcing functions defined in
eqns (2), (6), (15) and (14). The variable g is spatially constant if the forcing functions are zero
and it vanishes if the region is infinite.

It will suffice to give the solutions to eqns (33)-(35) for two special choices of f(t), from
either of which the response to any general f(t) may be computed by Stieltjes or Duhamel time
integration. The first choice is f(t) == Qe"o(t), namely the injection of a mass Qett of fluid
instantaneously at t = 0 (we use Qef, to connect with a latter use of this quantity to denote the
effective strength of generated fluid sources). The solution to eqn (35) in an infinite region is
then well known (but best rationalised in Boley and Weiner[l1], p. 166) to have the form

(36)

The forcing functions in eqns (33) and (34) are presently set to zero so integration of eqn (33),
after eliminating (J'99, can be shown to produce

(37a)

and then (J'99 is trivially determined to be

(37b)

where

erf (~) ==~f e-
x2

dx.

The second choice is that of f(t) = qH(t), describing a constant rate (q) of local fluid supply
which begins at t = O. The solution of eqn (35) is again well known (e.g. see Carslaw and
Jaegar [23]), namely

p =-q-[I-erf (~)]
47TpOKr 2

(38)
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and from this, through eqns (33) and (34) as before, we can establish the stress field

arr == - T/q {(I- erf (~)) +~l' S2 e-s2
/
4 dS}

27TpOKr 2 V7T 0 e
- T/q {( (~)) 1 L' S2 -s2/4 }a88 ==-- 1- erf - - --= "2 e ds.

27TpOKr 2 2V7T 0 ~

(39a)

It is useful to write the cartesian stress tensor form of eqn (39a), as a typical example of a
spherically symmetric field but also for the purpose of deriving the source dipole solution which
is considered next; the result is

{( (I:) 1 l' 2 ) ( 3 L~ 2 )}- T/q ~ S -s2/4 XiXj S -s2/4
aij = -- 1- erf - - -- "2 e ds 5ij +- -- - e ds.

27TpOKr 2 2V:;;: 0 ~ r 2 2V:;;: 0 e (39b)

Adjacent source and sink, a fluid dipole. We mentioned, on inspecting eqn (l4a), that both
fluid body-forces po/{ and effective total body-forces Fk (eqn 12) will be responsible for
generating a distribution of fluid dipoles: it is convenient, then, to have the solution for a single
dipole. Toward this, consider a source of strength I(t) at nkl1x and an equal sink at the origin
(where nk is a directional unit vector): suppose we let I1x become vanishingly small but retain a
constant value of 0 == l(t)l1x (the vortex strength). We have then a standard problem of finding
the difference between the influence fields of the source and the sink, with the same strength
O/l1x in the limit as the distance I1x between them vanishes. This problem will recur in
considering the point slip and point dilation and there we will be concerned with the difference
between influence fields of equal and opposite point forces, of magnitude T/l1x, with points of
application nkl1x apart. Thus we record the general solution here (using non-committal dipole
strength P in place of whatever constant is involved, for instance T or 0). The limiting process
is obviously one of differentiating the original field with respect to alterations, in the nk
direction, of the source (or point-force) location; thus, if a is the field variable of interest and
aU(Xi, t) is its value for a unit source (or force) at the origin, it is easy to show that

(40)

is the response to a dipole of strength P at the origin. Formula (40) is valid, of course, only if a
varies purely in magnitude (but not in orientation or any other sense) as the source location is
moved while holding the point of evaluation fixed: pore-pressure p, and any component of the
cartesian stress tensor, fits into this category.

First, suppose we are interested in an adjacent instantaneous source and sink, jet) ==
Q,115(t); the pore-pressure of the resulting dipole, 0 == 0·115(t), may be computed from eqn (36)
by means of eqn (40) with P == Oefl and the result is

(41)

A similar operation may be performed on the cartesian stress tensor (analogous to eqn(39b)
which results from eqn (37» but that is not important here, so we leave it out (it is similar to eqn
(43) except for time-evolution functions).

The more interesting results appear when I(t) == qH(t), namely that a constant dipole
strength, 0 == OH(t), generates the pore-pressure

(42)

obtained by using eqn (38) in eqn (40), with P == n.
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This result shows a remarkable similarity to the pore-pressure field of the point force (eqn
18 and eqn 31) in the nk direction: precisely, it is the difference between a steady-state harmonic
pore-pressure distribution (achieved by the dipole at t = 00) and the pore-pressure due to a point
force i.e. it is the point-force solution inverted in time. This bears out perfectly the roles of It
(which generates pure dipoles, no net point forces) and Fk in eqn (14a). It is worth noting
distinctions between the dipole and point force, however, especially in the stress-field, which
may be derived from eqn (39b),

1J0 [( nkXk){( 1 L€ ( 3) 2 -5
2/4 {-€2/4)aij =- --3 - 1+ 2 s e ds --e -25ij

poK 4'lTr Y; 0 { Y;

This dipole stress-field has the same structure as that (eqn 20) for a point force in the nk
direction, but the evolution functions are quite different: for instance, they all vanish at t = 0
and the stress-state becomes hydrostatic at t = 00, a quite different behaviour from that in eqn
(31).

SIMULATION OF AN ANOMALOUS PLASTIC REGION

Now that the fundamental solutions for a point force or fluid source are available to us, we
can actually employ a fairly simple procedure to model fluid injection or zones of plasticity in
an otherwise elastic fluid-saturated medium. A general schematic of such an embedded zone is
shown in Fig. 3; we consider a bounded body of volume V, surface S (which will be specialised
as unbounded later, for actual computations), containing an anomalous region (VA, surface SA)

in which some distribution of plastic deformation (EG, I1vP
) has developed. The region VA may

also be one into which fluid is being injected (or extracted) through a distribution of "bore­
holes". We wish to determine the field of influence of this anomalous zone.

The modelling procedure bears a strong resemblance to that frequently employed in
simulating inclusions and inhomogeneities in elastic bodies, (e.g. see Eshelby[24]). We imagine
that we can remove the region VA before plastic distortion (Eff, I1v P ) takes place, thereby
leaving S+A stress-free for the moment (or under whatever tractions and pore-pressure it

s

r

Fig. 3. Schematic for simulating an anomalous zone in a fluid-saturated porous medium. The zone VA is
removed before undergoing the plastic distortion, its original shape is then restored by supplying body­

forces and fluid which are withdrawn after it is re-inserted in the body.
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endures before the plasticity is induced). We now allow the inelastic deformation (Et av P
) to

develop in VA, giving it a distortion which makes it a misfit for its original location in V;
further, from a reservoir at zero (or reference) pressure we supply the fluid distribution (poav P

)

needed to fill the plastically increased pore-space. The next step is to fit this plastically distorted
and dilated material, which has as yet undergone no traction changes on S-A and no
pore-pressure changes in its interior, back into its original site in V.

It is suggested by eqn (9), and is easy to prove, that we can restore VA to its original state of
deformation (before Eli, av p were allowed to develop) by applying a distribution of body-forces
Fk = (.2'iikIE~),f over the region VA and equilibrating them with tractions Tk = - .2'jik/E~nt (where
nfA are components of the normal) on the surface S-A, provided we simultaneously withdraw a
volume of fluid .2'jikIBkIE~, per unit volume, at each point of VA. The fluid withdrawal is done at
zero (or reference) pressure so the storage reservoir now contains a superfluous mass of fluid
pO(.2'jikIBkIE~ - av P

) = r which must be put back into each unit volume of VA at the point where
it was extracted.

The region VA can now be fitted comfortably back into its place in V so that S+A and S-A

just touch. The last step is to simultaneously bond S+A to S-A while relaxing the externally
supplied tractions on S_A, which relaxation generates a layer of embedded body-forces
- Tk = .2'iikIE~n/A on the now interior surface SA in the volume V. At the same moment we relax
the externally supplied body-forces on the interior of VA, thereby inducing a body-force
distribution - Fk = (- .2'iikIE~),f over the anomalous (VA) region of the now integral body V.
Lastly, we must (all at the same instant) put back the fluid in the storage reservoir and this is
done by introducing a density of instantaneous fluid mass sources of strength r =
PO(.2'iikIBkIE~ - av p

), determined by the plasticity distribution in VA.
We have thus established that the plasticity in VA can be modelled by a distribution of

body-forces - Fk spread over VA and a layer of body-forces, of density - Tk per unit surface
area of SA, together with a distribution of instantaneous sources of strength r. We presented
our arguments for the sudden (but quasi-static) occurrence of the plasticity but any time­
dependent plastic distortion can be simulated by a Duhamel time integration with the solution
for a Heaviside time-dependence. The fluid injection (through "boreholes") has a direct
representation as a specified rate or amount of fluid supply i.e. as a spatial and temporal
distribution of sources, of the kind leading to either eqns (36), (37) or to eqns (38), (39).

DILAnON AND SLIP AS POINT FORCE DIPOLES

The process for simulating an anomalous plastic region (Fig. 3) may be simplified further by
establishing the Green functions for plastic strain itself: in the isotropic case there are just two
independent influence functions, that for a local (hydrostatic) dilation and that for localised
pure shear. We shall obtain both of them by considering the special case where VA undergoes
uniform plastic distortion so that Fk = 0; we then simply shrink VA to a point while retaining a
constant value of E~VA. Since av p and .2'iik/BkIE~ both contribute to an instantaneous source, for
which we know the solution (eqns 36 and 37), we already have the part of the influence function
which arises from r in Fig. 3 so we need only to determine the response to the tractions
Tk = .2'iik/EfinfA.

Point dilation. First consider the situation (Fig. 4) when VA is a cube which has undergone a
uniform plastic dilation E~ = !EP8ij; actually, any reasonably equiaxed region will do since it
loses all characteristic dimensions when shrunk to a point, but the cube is chosen for ease of
computation (similar remarks apply later to plastic slip). For isotropic 5£iikl and Bkf (eqns 10),
the appropriate uniform strengths of the body-force surface layer Tk and of the source strength
r (Fig. 4a) are

_ P A _ 3po(vu - V)E
P

n-KE nk, r- B(l-2v)(l+v
u

)
(44)

Plastic straining may be accompanied by pore-space dilation av p
; without any loss of

generality, we assume (discussion in Chap. 2 of [ID that AvP is related to Efk by some
microstructural parameter {J, AVP= {JEt. (typically (J = 1.0). Then, when VA is shrunk to a point
while retaining a constant value of the dilation centre strength Z = EPV

A
, the density of fluid
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(a I

r

s
v

( bl

Fig. 4. (a) Cubical anomalous zone undergoing uniform dilation, tr,.. (b) Zone is shrunk to a .rint and a
triplicate of point-force dipoles is obtained; Z is the limiting finite value of titVA as V -+0.

sources r - po~vP reduces to a single instantaneous source, with response given by eqns (36)
and (37) and strength

efl _ 3po(vu - v)
Q - B(1- 2v)(1 +vu/ - popZ. (45)

The solution which we must find, to superpose on this, is that for a centre of compression
Le. a triplicate of dipole pairs of equal and opposite point forces (Fig. 4b) to which the layer of
body-forces Tk reduces when VA is shrunk to a point. The forces have such a magnitude,
KZ/~x, that their fields do not cancel even when they are brought arbitrarily close,~x -+0. The
problem is exactly the same as that leading to eqn (40) and will arise again in the point-slip
solution so we use eqn (40) in the most general fashion: suppose a pair of point forces of
magnitude T/~x and direction mk (~nit vector) are separated by the vector n,~x and we allow
~x -+ O. Then eqn (40), with P == T, and eqn (20), with unit magnitude Pk = mk, may be used to
get the resulting stress-field of the point-force dipole,

(46)

while eqn (18) yields the pore-pressure field of the dipole

(47)

In the case of the compression centre nk = mk for each of the triplicate of dipoles so, for

SS VOL. 13 NO. 9-8
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each dipole (which we denote by E for extensional),

(48a)

(48b)

The solution in eqns (48) is is useful in its own right as the description of a local transformation
which is pure plastic extensiont in the direction mk. To obtain the dilation solution we must
now sum over any three orthogonal choices for the vector mk (e.g. choose it successively along
the XI, X2 and X3 axes) and the final result is

-KZpZ=-3-mm.
r

(49a)

(49b)

The first observation is that the field is spherically symmetric (e.g. see eqn (39» and thus can be
recorded in the notation of eqns (33)-(35); in so doing we apply eqn (31) to F I , F2, F3, /J and
obtain

z - KZ [(1 2) (II. - v) 1 if 2 -.,,2/4 d ]
(J'rr= 3 - II - -- ---= 'I) e 'I)

27T(1 - v)r I - v. 2V 7T 0

z KZ [(1 2) (II. - II) 1 {if 2 -.,,2/4 d /;3 -f2/4}](J'88 = - V - -- -- 'I) e 'I) -., e
47T(1- v)r3 1- II. 2"';; 0

z - KZ[ B(l + II.) 1:3 -f2/4]p =--3 ., e .
47Tr 3(1- v.)2V7T

(50a)

(50b)

(50c)

The second observation is that eqn (5Oc) has the same form as eqn (36) for the instantaneous
source, an extremely convenient idea in solving for a plastically dilating region, represented by
a distribution of sources and point dilations (e.g. in the dilating sphere solution described in [1]).
Even the stresses in eqns (50a) and (50b) are identical to those in eqn (37), except for a residual
elastic term, KZ(l- 211)/27T(1- v)r3

, which remains at t = 00 and is actually purely additive to
the solution (eqns (36) and (37» for an instantaneous point source of a strength given by

Qeff = _ pOKB(l + II.) KZ.
3c(1- II.)

(50d)

This kind of correspondence between the field of a point dilation (eqns 50) and that of a source
(eqns 36 and 37) is a useful tool and has been exploited in our solution for the dilating sphere
(Chap. 3 of [l]).

These solutions for dilation and fluid injection have substantial importance in such problems
as underground fracturing of saturated rocks and in earthquake-related occurrence of dilatant
anomalous zones (e.g. [25]) but they must usually be coupled to the occurence of plastic
shearing and the realistic simulation of actual problems is a separate matter (Chap. 4 of [I]).
Our only purpose here is to provide the fundamental solutions for such physically reasonable
anomalies in saturated rocks, soils and other porous media.

tObviously, one needs to make a small adjustment for Poisson contraction in the restoration process so solutions for
accompanying dipoles of strength pT, in orthogonal directions, must be added to eqn (48) to simulate pure tensile cracking.
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Pure shear at a point. The second influence function for plastic strain is generated by having
the anomalous region VA (Fig. 3) undergo a uniform pure shear EC =EWmml +mIni), l1v P =0,
perhaps as a result of simultaneous slip on planes with orthogonal normals mk and nk; VA may
be any reasonably equiaxed parallelipiped but we choose a cube again (Fig. 5a) for ease of
computation. Body-forces Fk vanish and, when :tilkl and Bid are isotropic (eqns 10), r
disappears also. The restoration of VA to its original state can thus be accomplished by a
surface traction distribution, given by

(51)

(52b)

Now VA is shrunk to a point (or viewed from a sufficiently large distance) while retaining a
constant magnitude of the product VAE~IN; if l1x is a typical side the tractions must thus reduce
to a pair of force dipoles (Fig. 5b) where each point force has a strength 2GM/l1x and l1x is
vanishingly small. The quantity 2GM (analogous to KZ used for the dilation strength earlier) is
often termed the "moment" (e.g. by Nur[26])'of the slip and is the limit of 2GE~VA as VA
shrinks to a point.

The point slip solution is thus the same as that for a momentless pair of point-force dipoles
(Fig. 5b) with strength 2GM, so we can employ eqn (47) to obtain (by the same logic as that
leading to eqn 40)

2GM[ 2
= -s- (n,x/(ximj +Xjmi) +mkXk(xinj +xjni»(3F2- gF2- F2) +2(n,xl)(mkXk)xiXj(5F\ - gFI)

r r

- 2(nimj +mjni)r2F2 +2(n,x,)(mkXk)(3F3 - gF3)8ij] (52a)

p = 4G~(nlx/)(mkXk)(3f\ - ell)
r

where we have employed the notation u~mk) for the stress-field of a unit point-force in the mk
direction at the origin of co-ordinates. The solution in eqn (52) is all that we formally require to
establish the stress-field of any plastically sheared region or slip-surface. The computation, by
superposing a distribution of point slippages, would normally be carried out numerically but we
must mention a useful example, the circular planar slipped region (or dislocation loop), where

(0 )

n

(bl P

P=2GM/6x

P

m

Fig. S. (a) Cubical anomalous zone undergoing uniform pure shear, E~n. (b) Zone is shrunk to a point and
we obtain a momentless pair of point-force dipoles; M is the limiting value of E~nVA.
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analytical features can be extracted (Chap. 3 of [1]). Some discussion of both analytical and
numerical implementation, with the array of fundamental solutions now available to us, seems
essential, so applications are discussed next.

APPLICATIONS AND CONCLUSIONS

Since the modelling of an anomalous region (Fig. 3) was independent of boundary S, the
occurrence of distributed plasticity (e!j, ~vP) and fluid injection (R F) in any region may be
simulated by an appropriate density of point slip (Fig. 5), point dilation (Fig. 4) and fluid
sources: the influence functions in eqns (52), (50) and (39) may be used provided that the
boundary conditions can be satisfied.

In the case of an infinite region V there is no need to modify these influence functions and
any specified plasticity distribution has a readily computable "consolidation" response: for
instance, we have used (Chap. 3 of [1]) a dilation distribution over a spherical region to examine
the effect of anomalous dilatancy in earthquake vicinities [25] and an inelastic shear distribution
over a plane circular surface to analytically determine the evolution of the stress field around a
bounded earth fault after the occurrence of a sudden slip (e.g. leading to aftershocks and
secondary slippage [26]). Obviously, if one is interested only in the far-field of such anomalies,
then there is no need to assign them a characteristic shape and the influence functions
themselves suffice to evaluate the time-dependent stress field.

If the region V is not infinite, the modelling, in essence, involves distributing a further
density of point forces and fluid sources (with influence given by eqns (18), (20), (31), (38) and
(39)) along the desired locus of S in such a fashion that their effect just makes up the difference
between the embedded plasticity field and the desired boundary-conditions (e.g. specified (J'ijni

and p) on S. Both a direct implementation of this notion and a more natural version (in
Laplace-transformed time variable) following from the reciprocal theorem of eqn (9), have been
described in Chap. 4 of [1]: the latter is somewhat more analogous to conventional numerical
boundary integral equation schemes (e.g. [27]) but it has less flexibility than the direct method,
especially for simulation of propagating cracks and shear faults.

In fact, a major motivation for establishing the fundamental solutions was the desire to
model just such time-dependent fracture propagation problems (e.g. as reviewed in Chap. 1 of
[1]). The concept is that progressive sliding (or opening) on a rupture surface can be simulated
as a density of concentrated slip (or extension) increasing just sufficiently to preserve some (e.g.
frictional) stress criterion on the surface. Such modelling has been conducted for the limiting
elastic contexts (e.g. [28]) and seems presently to be the only tractable procedure for modelling
progressive formation of displacement discontinuities. Thus, apart from their inherent value as
the first basic set of fundamental solutions for coupled linearized deformation-diffusion, the
influence functions have extensive applications [1] in understanding many geophysical, geo­
technical and (apparently) glaciological phenomena.
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APPENDIX
(a) Proof of reciprocal theorem. We begin with the obvious expression of the reciprocity in eqns (3), namely that

(AI)

in which we are using tilde to denote the Laplace transform (eqn 9c). We recall eqns (I), (3) and (4) and eqn (AI) then
becomes

We now employ the two transformed eqns (8) and (5), namely

(A3)

and these imply that

(p(l)Am(2) - p(?IAm(l»/po - (p(l)R F (2) - p(2)R F (I» +(p(l)(}/2) - p(2)(}/I\i ;: p~i)(}/21_p~;l(}?)

;: Po[it(I)(}?) - hF(21(}i'Ij. (A4)

We now integrate eqn (A2) over the region V with surface S and employ the divergence theorem; remembering eqn (6), the
result is

+Iv [(N')- (.:t';jk/i f;(lI)./)Uk(2) -(N2) - (.~(jk,if;(2».I)Uk(I)] dV

+Iv {Po(hF(I)(}?) - it(2)(}i'» +p(l)[RF(2) - AjjP(2) +9:'ijk,Bk1if;(2)j} dV

- Ivp(2)[R F(,) - Ajjp(I) + 9:'iik,Bk/if;(II] dV =O. (AS)

With reorganisation of terms, this is the desired result written in eqn (9). We note that the only restrictions on the fields
used in the theorem is that they correspond initially (t = 0) to an undrained deformation; thus the imposition of loading
must begin at t =O.
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(b) Field equations for an anisotropic medium. The equilibrium equations for displacement take the very obvious form

(A6)

which shows the gradient of plastic strains in the same role as the total body force f,. The equation of mass conservation
takes the form

(
vo) ap aUk/ F avP F

K/'P"= D+- -+Bk/-+poK"f..+--r Ipo.
J .'1 K

f
at at '1 I,' at (A7)

We would like to reduce this to some kind of diffusion equation (actually(4), a "pseudo-parabolic" equation) in a single
variable, some combination of p and Ulel' To do this we would need an equation for BlcIlTkl,ij (by analogy with the isotropic
problem); we might expect to obtain such a relation from the compatibility equations but this is not always the case. It
seems eqn (A7) is the best we can do with mass conservation: the major benefit is that the plastic porosity change ~vP and
the ftuid body forces ft are shown as corresponding to a source term ,F. However, the more significant comment is that
there are no well-known solutions of equations like (A7) except in the isotropic limit. (Since ki) is symmetric, it has
principal values and the principal co-ordinates can, of course, be scaled to give an isotropic homogeneous form of eqn
(A7); physically, we expect Bl) to have frequently the same principal directions as kij and :ti1kl to reveal uncoupled shear
and normal stress response in the system of principal co-ordinates. If so, then the simultaneous solution of eqns (A6) and
(A7) becomes more tractable). The general problem of establishing anisotropic fundamental solutions thus seems like a
very formidable one, given that there is already great difficulty (e.g. see [29]) in solving eqns (A6), even without the
coupling to eqn (A7). However, the methodology of using symmetry arguments (as employed in arriving at eqns (l9) and
(20) for instance), has aided us considerably in surmounting some of the difficulties involved here: for instance, the solution
for a transversely isotropic medium is presently being worked out with the motivation of application to stratified geological
structures. Given the potential for immediate application to simulation of faulting phenomena (especially in the earthquake
context(26) where any strong anisotropy can have profound temporary stabilization effects, by pore-suction induction on
the fault surface, whenever pore-ftuid is present [I) we propose the establishment of tractable fundamental anisotropic
solutions as an important area of endeavor.


